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1. INTRODUCTION 

The fundamental problem of unsteady-state heat transfer 
between solid surfaces and steady forced flows has long been 
the subject of many investigations [1-6]. However, all the 
previous series expansion solutions (refs. [1-3] and the 
literature cited therein), local similarity and nonsimilarity 
solutions [4, 5], and even the finite-difference solution [6] are 
approximate ones. Only the solutions in the initial and final 
stages of transient have been verified by comparison with the 
unsteady conduction and steady convection solutions. The 
accuracy of these approximate solutions in the transition 
stage remains uncertain. There is still a need for a simple and 
very effective solution method that will give precise solutions 
over the entire transient history of unsteady convection. 

In the present study, we introduce a new method for ana- 
lyzing unsteady forced convection heat transfer. The method 
is based on the concept that the whole transient history 
consists of the initial stage of unsteady conduction, the final 
stage of steady convection, and the transition stage between 
these two limiting cases. Our approach is to model the ther- 
mal boundary-layer thickness of the unsteady convection as 
an appropriate combination of those of unsteady conduction 
and steady convection. In addition, a proper dimensionless 
time is proposed as the ratio of the thermal boundary-layer 
thickness of unsteady convection to that of steady convec- 
tion. As a result, the transformed energy equation describes 
accurately the entire transient history and can be reduced 
readily to the conventional similarity equations of unsteady 
conduction and steady forced convection. Therefore, very 

precise finite-difference solutions and a simple correlation 
equation can be obtained for 0.001 ~< Pr <~ oo. 

We demonstrate the proposed solution method for 
unsteady forced convection heat transfer with the case of a 
rotating disk. 

2. ANALYSIS 

The fluid of the steady laminar flow induced by a rotating 
disk is assumed to be incompressible and with constant 
properties. Initially the fluid and the solid surface are at 
the same temperature T~. At a certain instant the surface 
temperature is changed from T~ to To and maintained there- 
after. This situation is the case of a step change in surface 
temperature. Another case considered is a step change in 
heat flux from 0 to q0. 

The energy equation of unsteady heat transfer from the 
suddenly heated surface to the steady laminar flow can be 
written as 

OT 8T OT 02T 
~ -  +U~-r +W~z = ~ - -  (1) 

~z 2 

where u and w are the velocity components in the radial and 
axial coordinates, respectively. This equation is subject to 
the initial and boundary conditions 

T(r, z, O) = To~ (2) 

T(r, oo, t) = To~. (3) 
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NOMENCLATURE 

F 
G 
h 

H 
k 

N u  

Pr 
qo 
r 

Re 
t 
T 
U, V, W 

dimensionless radial velocity, u/cor 
dimensionless tangential velocity, v/tor 
local heat transfer coefficient 
[j s - i  rn-2 K l] 
dimensionless axial velocity, wf/ct 
thermal conductivity of  fluid 
[j s - i  m - i  K l] 
Nusselt number, hr/k 
Prandtl number, v/a 
heat flux at the disk surface [J s ~ m 2] 
radial coordinate [m] 
Reynolds number, cor2/v 
time [s] 
temperature [K] 
velocity components in radial, azimuthal, 
and axial directions [m s-i] 
axial coordinate [m]. 

6~ thermal boundary-layer thickness of  steady 
forced convection, ~ r/(aRe m) [m] 

6it penetration thickness of  transient 
conduction, (4ctt) la [m] 

( dimensionless axial coordinate, z/6 
r/ conventional dimensionless axial 

coordinate, (z/r)Re I/2 
0 dimensionless temperature, 

(T--  To~)/(To-- T~o) 
v kinematic viscosity of  fluid [m 2 s-l] 

dimensionless time, 616~ 
o Pr/(1 + Pr) 2/3 

dimensionless temperature, 
( T -  T~)/(qof/k) 

co angular velocity of  rotating disk [rad s-  J] 
l(t) Heaviside unit step function, = 1 for t > 0; 

= 0 f o r t ~ < 0 .  

Greek symbols 
thermal diffusivity of  fluid [m 2 s -  1] 

6 thermal boundary-layer thickness of 
unsteady convection, (6,- l + 6 / i )  ~ [m] 

Subscripts 
s steady forced convection 
t transient conduction 
0 at the disk surface 
of far from the disk surface. 

The boundary conditions at the disk surface is 

T(r,O,O = T~ + ( T o -  Too)l(t) 

for the case of  a step change in temperature ; or 

\azL : o  = q0 l ( t )  

for a step change in heat flux. The function l(t) in equations 
(4) and (5) is the Heaviside unit step function: l(t) is equal 
t o l f o r t > 0 ; a n d 0 f o r t ~ < 0 .  

In the initial stage of  the whole transient history, the heat 
transfer is basically a heat diffusion process with a pen- 
etration thickness 6, ~ (4at) w2, while, in the final stage, it is 
essentially a steady forced convection, the scale of thermal 
boundary-layer thickness of steady convection is 

6~ ~ m 
a r e  ~/2 

to that of  steady convection : 

(4) 6 6, 

6s 6t H- 6s 
- - -  ( 1 + ~ )  - l  = ( l + r / ( ~ f 4 c ~ t ) Y  1 . a R e  '/z ] (9) 

Note that ¢ ~ 0 for the case of  unsteady conduction at very 
(5) small times, whereas ¢ = 1 for the case of steady convection 

in which 6 = 6s. 
For  the case of a step change in surface temperature, 

the dimensionless temperature is usually defined as 
0 = (T--  T~) / (To -  T~), while, for a step change in surface 
flux, a special nondimensional form of temperature is intro- 
duced : 

d~-  qo6/k - qor/k +aRe  m . (10) 

In addition, a nondimensional form of  the axial velocity is 
(6) defined as 

where a = Pr / ( l+Pr )  2/3 [7] and the Reynolds number 
Re = cor2/v. The addition ofa(Pr)  properly scales the thermal 
boundary-layer thickness for large and small Prandtl num- 
bers from 0.001 to infinity. 

It is obvious that the heat transfer regime 6 grows as 6it at 
the initial stage, and finally develops to 6, at the final stage 
of  steady forced convection. We therefore assume that the 
heat transfer regime 6 would be an appropriate association 
of  6t and 6s. We propose that 

1 1 1 
= + 7 - .  (7)  

3 fit os 

At the initial stage, 6, << 6s and equation (7) reduced to 6 = 6. 
while, at the final stage, (4~/) w2 > 6s and 6 ~ 6s. 

For  the pseudo-similarity transformation of  the energy 
equation, we define a dimensionless axial coordinate in terms 
of  the heat transfer regime 6 : 

z ~=~=; (8) 

Moreover, a dimensionless time is proposed as the ratio of  
the thermal boundary-layer thickness of  unsteady convection 

w, )1  wr,  
H . . . .  +aRe  1/2 = 4. (11) 

O~ trgel/2 

Using the dimensionless variables defined above, the 
energy equation (1) can be transformed to yield 

0 " - H 0 ' + 2 ( 1 - - 0 3 ~ 0  ' = 2 ~ ( 1 - 0 3 ~  (12) 

for the case of  a step change in surface temperature. The 
primes in this equation designate partial derivatives with 
respect to (. The initial condition and the boundary condition 
at z ~ of (i.e. z > 6) are combined into 0(0, oo) = 0, while 
the boundary condition at z = 0 becomes 0(4, 0) = 1. 

Equation (12) can be readily reduced, by setting ~ = 0, to 
the similarity equation of  unsteady conduction : 

0"+2(0 '  = 0. (13) 

Note that the term HO" has been eliminated from equation 
(12), since H is proportional to 4. The energy equation (12) 
is also reducible to the following similarity equation of steady 
forced convection by setting ~ = 1 : 

O"-HO' = 0. (14) 
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For the case of a step change in surface heat flux, the 
transformed energy equation and initial and boundary con- 
ditions are 

f$“-H@+2(1-5)‘(1+‘-9) = 25(1-5)‘g (15) 

f#J(O, co) = 0 @(C&O) = - 1. (16) 

The similarity energy equation reduced from equation (15) 
for the limiting case of unsteady conduction (5 = 0) is 

4” + 214’ - 24 = 0, (17) 

while the similarity energy equation of steady convection 
(t: = 1) is 

cji’-Hq!C = 0. (18) 

In the numerical solution of the transformed energy equa- 
tions (12) and (15), the dimensionless transverse velocity 
H(i) had been obtained from the following similarity forms 
of the continuity and momentum equations 

PrH’+2(1+P@‘52F= 0 (19) 

Pr2F”-PrHF’-(1+Pr)4’3~Z(F2-G2) = 0 (20) 

Pr2G”-PrHG’-2(l +Pr)4’3tZFG = 0 (21) 

subject to the following boundary conditions : 

F(0) = 0, G(0) = 1, H(0) = 0 

E(w) = 0, G(co) = 0. (22) 

where F = u/m and G = u/m are the dimensionless radial 
and axial velocities. 

3. NUMERICAL METHOD 

The nonsimilarity energy equations (12) and (15) were 
solved numerically by using a very effective finite-difference 
scheme, well known as the Keller’s Box method [8]. 

The numerical integration started at 5 = 0 and marched 
step-by-step with A[ = 0.01 to 5 = 1. The step size of the [- 
coordinate, A[, and the edge of the boundary-layer, [,, are 
adjusted for different ranges of Pr. The uniform grid Ai has 
been chosen as 0.0002 for Pr = 0.001; 0.001 for 
0.01 < Pr < 0.1 ; and 0.01 for Pr 2 0.7. The edge of the 
boundary layer was varied from [, = 7 for Pr = 0.001 to 
(, = 32 for Pr > 10 000. 

4. RESULTS AND DISCUSSION 

4.1. Temperature profiles 
The development of the dimensionless temperature pro- 

files following a step change in surface temperature and heat 
flux is shown in Fig. 1. In this figure, we use the conventional 
dimensionless axial coordinate q = (z/r)Re”’ = (</a)[ 
instead of [ to eliminate the time variable. Thus, the devel- 
opment of temperature profiles with time can be shown 
explicitly. For the same reason, the dimensionless tem- 
perature (T- T,)Re”‘/(q,r/k) = (t/o)4 is used in plotting 
Fig. 1 (b) for the case of a step change in heat flux. 

Figure 1 shows the step-by-step variation of thermal 
boundary layer when the dimensionless time variable < 
increases. For 5 > 0.9, the temperature profiles nearly 
coincide with that of the steady convection. 

4.2. Nusseli numbers 
For the case of a step change in surface temperature, the 

Nusselt number, Nu = hr/k, represents the heat transfer rate 
between the solid surface and the ambient fluid. Nu is related 
to the numerical results of 8’(& 0) by 

Pr=o. 72 

Steady state 
(f=O. 9.1) 

I\\ [=O.l,O.Z I.., 0.7 

J+O.El 

a 

0 1 a73 4 

Fig. 1. The development of the dimensionless temperature 
profile following a step change in (a) surface temperature ; 

(b) surface heat flux. 

NU 
~ = 
Re’l’ 

- ;8’(:,0) (23) 

whereas, for the case of a step change in heat flux, the Nusselt 
number represents the surface temperature and can be cal- 
culated from 

(24) 

In Fig. 2, the present numerical solutions of Nu/Re”’ for 
the case of a step change in surface temperature are compared 
with the series expansion solutions [l] and the instant non- 
similarity solutions [5] for Pr = 1, 10 and 100. In this figure, 
we use the traditional time scale wt which is related to the 
present dimensionless time by 

(1+Pr)4’3 5 2 
wt=p - 

4Pr ( > l-5 . (25) 

This figure reveals that, at the initial and final stages, the 
previous approximate solutions are in excellent agreement 
with the finite-difference solution. However, at the transition 
stage the approximate solutions are somewhat over- 
estimated. The maximum deviations of the approximate 
solutions from the finite-difference solutions over the whole 
time domain are also presented in Table 1. 

Figure 3 presents the finite-difference solutions of Nu/Re”* 
for both the cases of a step change in surface temperature 
and in heat flux. This figure shows that Nu/ReJZ decreases 



Technical Notes 751 

Nu 
Re,/R 

10 o 

P r e s e n t  

. . . .  3~s [~ ] 
. . . .  N o n s ~ m ~ r ~  [5] 

f 0 - ;  . . . . . . . .  ' . . . . . . . .  ~ - , , , . , , , I  , , -  . . . . .  

~0-4 ~o-' cot ~°~ ~o' ~o ~ 

Fig. 2. Comparisons of the approximate solutions and the 
present finite-difference solutions of  Nu/Re ~/2. 

Table 1. Maximum deviations (percent) of the approximate 
solutions from the numerical solutions for a step change in 

surface temperature 

Pr 1 10 100 

Series solution 3.7 0.7 - 0 . 4  
Nonsimilarity solution 3.7 3.6 3.5 

linearly with e~t at small times. This regime is regarded as 
the initial stage. At this stage, the numerical results coincide 
completely with the following exact solutions of  unsteady 
conductions : 

C ReU2 \n~ot) (26) 

for the case of  a step change in surface temperature ; and 

N u t  ~ / n  { P r )  1/2 

Re,/2 = 2 \o~t) (27) 

for a step change in surface heat flux. The former was solved 
from equation (13) with the boundary conditions 0(0) = 1 
and 0(oo) = 0, while the latter was obtained from equation 
(17), subject to 4~'(0) = - 1 and q~(o¢) = 0. 

1 0  ~ br~ 

Re t/z 10 o 

.-. . . ._~ ~ . . . _  t~-~oooo 
~__~.~"~ ~._ -~. 

- ~  Temperct~re  

I 0 - 4  . . . . . .  .a . . . . . .  .a . . . . .  .a . . . . . .  .a . . . . . .  ~ . . . . . . .  

Io-4 ~o-' ~o* 1o~ ) t Io: to: Io" 

1/2 Fig. 3. Variations of  Nu/Re with time. 

At the final stage, the numerical solutions of  Nu/Re ~/z for 
the cases of  a step change in temperature and in heat flux are 
exactly the same and are in excellent agreement with the 
exact solution : 

Nus a a 
- -  = - - a O ' ( l , O )  - ~ ~ . 

Re=/Z ~(1,0) fo exp I I i  H(O d~l d~ 

(28) 

The exact solution for the case of  uniform surface tem- 
perature was obtained from equation (14), associated with 
the boundary conditions 0(0) = 1, 0(oo) = 0, while that for 
the case of  uniform heat flux was solved from equation (18) 
with the boundary conditions qY(0) = - 1, ~b(oo) = 0. 

4.3. Correlation of Nusselt numbers 
A very comprehensive correlation equation for convenient 

estimation of  the Nusselt number of  unsteady convection is 
proposed as 

I ~ -  +aRe 1/2 ]"  

Nu = I (  1 ~.  N u  t -In 
- 

L x/4~t 

(29) 

which is based on the unsteady conduction and the steady 
convection solutions. The heat transfer group of  transient 
conduction, Nut/(r/~/4ott), can be obtained by recasting the 
exact solutions of equations (26) and (27) as 

Nut 2 
(30) 

r/,/4~t ,/,~ 
for the case of  a step change in surface temperature ; and 

Nut _ x/n (31) 
r/x/4ctt 

for the case of a step change in heat flux. The numerical 
solutions of Nut/(r/x/4o~t ) at ~ = 0 are 1.12832 and 1.77245 
for the cases of a step change in surface temperature and heat 
flux, respectively. These numerical results are in excellent 
agreement with the exact solutions. 

A correlation equation of  Nu~ for steady convection has 
been reported [8] : 

Nu~ _ 0.6109( l + P r  ~2/3 (32) 
aRe j/2 0.5301+0.3996Pr 1/2 + Pr] " 

This correlation has a maximum error of  4% when compared 
with numerical data over the range of  0.001 ~< Pr <~ oo. 

The exact solutions of Nut/(r/x/4~t ) for unsteady conduc- 
tion, equations (30) and (31), and the correlation equation 
(32) ofNudRe ~lz for steady forced convection was substituted 
into the correlation equation (29). The best fitting of  the 
exponent n with the numerical data is listed in Table 2. 
The maximum error of  this correlation over the entire time 
domain (0 ~< ~ ~< 1) is also presented in this table. 

5. CONCLUSIONS 

A very effective solution method has been developed for 
solving unsteady forced convection heat transfer between a 
steady laminar flow and solid surfaces, with a step change in 
temperature or heat flux. The method is based on the concept 
that the unsteady convection is a proper combination of  
the two limiting cases of unsteady conduction and steady 
convection processes. From this viewpoint, we have pro- 
posed an appropriate thermal boundary-layer thickness of  
unsteady convection in terms of  the penetration depth of 
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Table 2. Values of  n and the maximum error of the cor- 
relation equation (29) for the whole time domain 

Range of  Pr n Maximum error (%) 

Step change in temperature : 
0.01 ~< Pr <~ 0.6 2.09 7.41 
0.7 ~< Pr ~< 10 000 3.68 6.52 
Step change in heat flux : 
0.01 ~< Pr <~ 0.6 2.21 7.65 
0.7 ~< Pr <~ 10 000 3.85 5.92 

transient conduction and the boundary-layer thickness of  
steady forced convection. With the growing boundary-layer 
thickness as a basis, we have introduced a nondimensional 
transverse coordinate and a dimensionless time, which are 
with proper scales for the initial, the transition, and the final 
stages of  unsteady convection. Consequently, a com- 
prehensive formulation and precise numerical solutions can 
be obtained over the entire transient history including 
unsteady conduction, true unsteady convection, and steady 
convection. Moreover, comprehensive and accurate cor- 
relation equations of  Nusselt numbers have been developed, 
which are based on the solutions of  unsteady conduction and 
steady convection. 

The proposed method has been proved to be very effective 
and accurate via the demonstration of  unsteady forced con- 
vection of a rotating disk. The present solution method has 
been applied successfully to many other unsteady convection 
heat transfer problems of  various configurations and fluids. 
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1. INTRODUCTION 

The heat transfer on a circular cylinder embedded in a 
uniform cross flow is important not only due to its fun- 
damental nature per se but also due to related engineering 
applications. Despite the simplicity of  the relevant geometry, 
the flow over a cylinder frequently entails multi-faceted flow 
structures such as laminar boundary layer, transition, tur- 
bulent boundary layer, separation and wake formation. For- 
tunately, for the range of  the Reynolds number pertinent to 
the hot-wire anemometry (commonly Re <~ 40), the flow is 
known to be steady and laminar. In this range of  Re, the 
Nusselt number (dimensionless heat transfer coefficient) has 
been expressed as a canonical function of  Pr and Re, with 

empirical correction factors accounting for the variation of 
fluid properties. Particularly for the case of  air, the available 
heat transfer correlations are of  the following form : 

Nu = (A + B Re")(Tm/T~) p (1) 

due to a very weak dependency of  Pr on temperature. 
However, a use of  the mean temperature Tm in equation (1) 
is traditional rather than physically justifiable. A survey of  
the literature indicates that the existing correlations are of  
limited applicability to a narrow range of  temperature ratios, 
typically for Tm/Ta smaller than 1.2. Furthermore, the avail- 
able correlations are all biased, i.e. valid only for either hot 
(Tw > T~) or cold (T,  < T,) cylinders. Therefore, such hot 


